
Tashfeen, Ahmad
Dr. Qi Cheng
29 March 2023

General Examination
In Scriptum

1. IntRoduction

Cryptography thrives on easy problems that can be disguised as the hard ones. In other words, if a hard
problem can be easily solved with a special information, it’s likely found somewhere in a cryptographic system.
Hard in such problems is usually defined as hardness due to the long standing status of a problem and not
provably hard. Take for example the factoring problem contingent wherein is the security of the famous Rivest–
Shamir–Adleman (RSA) encryption. While suspected, there is no proof of existence, or more importantly, a
proof of non-existence of a polynomial time factoring algorithm [1], i. e., factoring being in P. This puts
factoring in at most the non-deterministic polynomial (NP) complexity class of problems however not1 in the
NP-complete[2]. Whether a cryptographic system can be as hard to break as an NP-complete problem is an
open problem itself.

Since a solution to any problem in the NP-complete class solves every other problem in the same class as
well, theseNP-complete problems are generally considered harder than the exclusivelyNP problems. It then
makes sense to seek a cryptographic system that relies on the hardness of a NP-complete problem. The first
attempt to develop such a system was made by Merkle and Hellman in the 1970s [3] [4]. The particular NP-
complete problem they based their cryptosystem on is the knapsack or the subset sum problem. In this report,
we will discuss the knapsack problem by considering the obvious and the surprising sources of its solutions.

2. BacKgRound

In this section we will introduce the mathematical definitions and notations in a way that is suitable to the
formulation of different solutions to the knapsack problem.

2.1. NP-Imposter. Some problems appear to be NP-complete without any special information. But, the
very fact that some special information exists because someone has it, nullifies the NP-completeness. This is
because–with the special information that exists, the problem can be solved easily. Even though the theoretical
NP-completeness is ruled out due to the existence of special information, i. e., a private key, someone missing
this special information is forced to treat such an imposter problem just like any other NP-complete problem
without a major breakthrough. We will refer to these lookalike NP-complete problems as the NP-imposter
problems.

2.2. Linear Algebra. Among the surprising sources of solutions to the knapsack problem are lattices. Suc-
cinctly, a lattice is a discrete subgroup of R𝑛 . Before we delve further into the operations and definitions of
lattices, we start by defining a simple vector projection and orthogonality.

In figure 1, we have two linearly independent vectors 𝑎 and 𝑏, both in R2. The projection of 𝑎 onto 𝑏 is given
as the green vector 𝑎1. We define the 𝑎1 projection vector of 𝑎 onto 𝑏 as,

𝑎1 = proj𝑏 (𝑎) =
(
𝑎 · 𝑏
𝑏 · 𝑏

)
𝑏

FiguRe 1. Projection of 𝑎 onto 𝑏, i. e., 𝑎1 = proj𝑏 (𝑎).

1The scale of theoretical complexity from the easiest to the hardest is arranged as P
?
⊆ NP ⊂ NP-complete ⊂ NP-hard ⊂ A.

1

2

Note that
(
𝑎 · 𝑏
𝑏 · 𝑏

)
is a scaler since it is a ratio of two dot (inner) products. Further note that while 𝑎 and 𝑏

form a basis of R2 on the account of their linear independence, they do not form the desired orthogonal basis.
On the other hand, 𝑎2 and 𝑏 not only form the basis of R2 but they are also orthogonal. Therefore, we say that
𝑎2, 𝑏 form an orthogonal basis of R2. Since we already have 𝑏, observe that,

𝑎1 + 𝑎2 = 𝑎 Head-to-Tail Rule.

𝑎2 = 𝑎 − 𝑎1 Subtracting 𝑎1 on both sides.

= 𝑎 − proj𝑏 (𝑎) By figure 1.

= 𝑎 −
(
𝑎 · 𝑏
𝑏 · 𝑏

)
𝑏 By the definition of proj𝑏 (𝑎) above.

= 𝑎 − 𝜇𝑏 Let 𝜇 =

(
𝑎 · 𝑏
𝑏 · 𝑏

)
.

The technique of projections to achieve an orthogonal basis is generalised as the Gram-Schmidt process [3].
Let 𝑣1, 𝑣2, 𝑣2, . . . , 𝑣𝑛 be a set of linearly independent vectors forming a basis of R𝑛 , then we define the orthogonal
basis as 𝑢1, 𝑢2, 𝑢2, . . . , 𝑢𝑛 .

𝑢1 = 𝑣1

𝑢2 = 𝑣2 − proj𝑢1 (𝑣2)
𝑢3 = 𝑣3 − proj𝑢1 (𝑣3) − proj𝑢2 (𝑣3)
𝑢4 = 𝑣4 − proj𝑢1 (𝑣4) − proj𝑢2 (𝑣4) − proj𝑢3 (𝑣4)

. . .

𝑢𝑛 = 𝑣𝑛 − proj𝑢1 (𝑣𝑛) − proj𝑢2 (𝑣𝑛) − proj𝑢3 (𝑣𝑛) − · · · − proj𝑢𝑛−1 (𝑣𝑛)

The above can be explicitly written to demonstrate the Gram-Schmidt coefficients
(
𝑣𝑖 · 𝑢 𝑗

𝑢 𝑗 · 𝑢 𝑗

)
.

𝑢1 = 𝑣1

𝑢2 = 𝑣2 −
(
𝑣2 · 𝑢1
𝑢1 · 𝑢1

)
𝑢1

𝑢3 = 𝑣3 −
(
𝑣3 · 𝑢1
𝑢1 · 𝑢1

)
𝑢1 −

(
𝑣3 · 𝑢2
𝑢2 · 𝑢2

)
𝑢2

𝑢4 = 𝑣4 −
(
𝑣4 · 𝑢1
𝑢1 · 𝑢1

)
𝑢1 −

(
𝑣4 · 𝑢2
𝑢2 · 𝑢2

)
𝑢2 −

(
𝑣4 · 𝑢3
𝑢3 · 𝑢3

)
𝑢3

. . .

𝑢𝑛 = 𝑣𝑛 −
(
𝑣𝑛 · 𝑢1
𝑢1 · 𝑢1

)
𝑢1 −

(
𝑣𝑛 · 𝑢2
𝑢2 · 𝑢2

)
𝑢2 −

(
𝑣𝑛 · 𝑢3
𝑢3 · 𝑢3

)
𝑢3 − · · · −

(
𝑣𝑛 · 𝑢𝑛−1
𝑢𝑛−1 · 𝑢𝑛−1

)
𝑢𝑛−1

Let 𝜇𝑖, 𝑗 =
(
𝑣𝑖 · 𝑢 𝑗

𝑢 𝑗 · 𝑢 𝑗

)
for 𝑖 > 𝑗 then,

𝑢1 = 𝑣1

𝑢2 = 𝑣2 − 𝜇2,1𝑢1
𝑢3 = 𝑣3 − 𝜇3,1𝑢1 − 𝜇3,2𝑢2
𝑢4 = 𝑣4 − 𝜇4,1𝑢1 − 𝜇4,2𝑢2 − 𝜇4,3𝑢3

. . .

𝑢𝑛 = 𝑣𝑛 − 𝜇𝑛,1𝑢1 − 𝜇𝑛,2𝑢2 − 𝜇𝑛,3𝑢3 − · · · − 𝜇𝑛,𝑛−1𝑢𝑛−1

3

Let 𝝁 be an 𝑛 by 𝑛 lower-triangular Gram-Schmidt coefficients matrix defined as,

𝝁 =



0 0 0 · · · 0 0
𝜇2,1 0 0 · · · 0 0
𝜇3,1 𝜇3,2 0 · · · 0 0
𝜇4,1 𝜇4,2 𝜇4,3 · · · 0 0
...

...
...

. . .
...

...
𝜇𝑛,1 𝜇𝑛,2 𝜇𝑛,3 · · · 𝜇𝑛,𝑛−1 0


Code listing 1 gives a Python implementation of the vector projections and the Gram-Schmidt orthogonali-

sation as we defined it.

1 import numpy as np
2
3 def proj(u, v): # projecting v onto u
4 mu = (v @ u.T) / (u @ u.T)
5 return mu * u, mu
6
7 def gram_schmidt(B):
8 U, Mu = np.array(B, dtype=B.dtype), np.zeros(shape=B.shape, dtype=B.dtype)
9 for i in range(1, B.shape[1]):

10 for j in range(i):
11 projection , Mu[i][j] = proj(U[:, j], B[:, i])
12 U[:, i] -= projection
13 return U, Mu

Listing 1. Vector projection proj𝑢 (𝑣) and Gram-Schmidt orthogonalisation.

2.3. Knapsack Problem. If your house was on fire and you could only carry out a kilogram of weight with
you, you might want to add the most valuable items up to a kilogram. How could that be done? You can take
the power set of your household items, then sieve it to only contain the sets that weigh a kilogram and find the
one with the maximum value. But of course, your house is on fire, so you hurry up!

We solve an instance of the knapsack problem every-time we make change. The most common coin denom-
inations in the US are the twenty-five cents, ten cents, five cents and one cent, i. e., quarters, dimes, nickels
and pence.

𝑀′ = {1, 5, 10, 25}
Let’s say we had the above set and wanted to make 31 cents. You may come out with the subset {1, 5, 25}. We
can encode this as a vector,

𝑀′ = [1, 5, 10, 25], 𝑥 = [1, 1, 0, 1]
Note that,

𝑀′ · 𝑥 = 31

We define the knapsack problem as, for any 𝑀 ∈ N𝑛 , 𝑆 ∈ 𝑁 find 𝑥 ∈ {0, 1}𝑛 such that,

𝑀 · 𝑥 = 𝑆

2.4. Lattices. Lattices are to euclidean spaces what modulo classes are to the real number line. Consider a
basis matrix B with 𝑑 linearly independent column vectors {1 ≤ 𝑖 ≤ 𝑑 : 𝑣𝑖 ∈ R𝑛} such that 𝑣𝑖 is the 𝑖th column
of B. If 𝑑 = 𝑛 we can write the entire R𝑛 as,

R𝑛 = {𝑥 ∈ R𝑑 : B𝑥}
As a sanity check, we inspect the dimensions, dim(B(𝑛,𝑑)𝑥 (𝑑,1)) = (𝑛, 1); makes sense. If we restrict 𝑥 ∈ Z𝑑 to
the integers, i. e., B𝑥 to only the integral linear combinations and may allow 𝑑 ≠ 𝑛, we obtain a lattice,

L = {𝑥 ∈ Z𝑑 : B𝑥}
The dimension of the lattice is dim(L) = 𝑑 , i. e., the number of vectors in the basis matrix B.

4

The following example bases illustrate a key difference in how bases behave differently in the euclidean space
versus the lattice space.

B =

[
47 95
215 460

]
, B’ =

[
0 50
50 0

]
Note that while both B and B’ span the same space, i. e., R2 and B’ is the trivial orthogonalisation of B. The
two bases B and B’ do not span the same lattice, as well as there is no trivial orthogonal version of B in the
general case. Can you spot the trivial orthogonalisation of B in figure 2?

FiguRe 2. Lattice spanned by B and B’.

If we further restrict to B to Z𝑛×𝑑 , the resultant lattices are called the Lagarias-Odlyzko lattices [5]. We’ll call
these the knapsack lattices.

3. MeRKle–Hellman KnapsacK CRyptosystem

Revisiting the aforementioned coin denominations,

𝑀′ = {1, 5, 10, 25} = {𝑟 ′1, 𝑟 ′2, 𝑟 ′3, 𝑟 ′4}

Note that,
𝑟 ′𝑖+1 ≥ 2𝑟 ′𝑖

Is that just a coincidence? No. The sets/sequences of the form𝑀′ = {1 ≤ 𝑖 ≤ 𝑛 : 𝑟 ′𝑖 } where 𝑟 ′𝑖+1 ≥ 2𝑟 ′𝑖 are known
as super increasing [3]. Knapsack problems for such sets can be solved in linear time by the algorithm given in
listing 2. Furthermore, there is a bijection between the subsets of super increasing sequences and their sums.

1 x = [0 for i in M_] # Hoffstein Prop. 7.5 (pg. 379)
2 for i in range(len(M_)-1, -1, -1): # Loop i from n down to 1
3 if S_ >= M_[i]: # If S >= M'[i],
4 x[i] = 1 # set x[i] = 1 and
5 S_ = S_ - M_[i] # subtract M'[i] from S
6 else: # Else
7 x[i] = 0 # set x[i] = 0

Listing 2. Linear time algorithm to solve the knapsack problem for super increasing sets M_ = 𝑀 ′.

5

If Alice can disguise a super increasing set 𝑀′ as otherwise 𝑀 then Bob can send her messages 𝑥 (binary
vectors) by sending 𝑆 = 𝑀 · 𝑥 over a public channel. In such a way, Eve knows (𝑀, 𝑆) and has to solve an NP-
imposter problem to obtain 𝑥 whereas since Alice knows (𝑀′, 𝑆′), she can use the algorithm given in listing 2
to quickly obtain Bob’s original message. This is chronologically shown in table 1.

Alice Eve Bob
Pick 𝑀′ = [𝑟 ′1, . . . , 𝑟 ′𝑛], such that 𝑟 ′1 > 2𝑛, 𝑟 ′𝑖+1 ≥ 2𝑟 ′𝑖 .

Pick 𝐴, 𝐵 with 𝐵 > 2𝑟 ′𝑛 and gcd(𝐴, 𝐵) = 1.
𝑀

Let 𝑟𝑖 ≡ 𝐴𝑟 ′𝑖 mod 𝐵 & 𝑀 = {𝑟 ′𝑖 ∈ 𝑀′ : 𝑟𝑖} 𝑀
𝑆

𝑆 𝑆 = 𝑀𝑥
(𝑀′, 𝑆′) is O(𝑛). (𝑀, 𝑆) is NP-imposter.

Let 𝑆′ ≡ 𝐴−1𝑆 mod 𝐵.
Solve (𝑀′, 𝑆′) → 𝑥 .
We have 𝑀′𝑥 = 𝑆′.

Table 1. Merkle–Hellman knapsack cryptosystem [3].

Decryption works as follows,

𝑆′ ≡ 𝐴−1𝑆 mod 𝐵

≡ 𝐴−1𝑀𝑥 mod 𝐵 Bob’s Encryption 𝑆 = 𝑀𝑥

≡
𝑛∑
𝑖=1

𝐴−1𝑟𝑖𝑥𝑖 mod 𝐵 Since 𝑀 = {𝑟 ′𝑖 ∈ 𝑀′ : 𝑟𝑖}

≡
𝑛∑
𝑖=1

𝐴−1(𝐴𝑟 ′𝑖)𝑥𝑖 mod 𝐵 Since 𝑟𝑖 ≡ 𝐴𝑟 ′𝑖

≡
𝑛∑
𝑖=1

𝑟 ′𝑖𝑥𝑖 mod 𝐵

≡ 𝑀′𝑥 mod 𝐵

= 𝑀′𝑥 Since 𝑀′𝑥 ≤ 𝑟 ′1 + 𝑟 ′2 + 𝑟 ′3+, . . . , 𝑟 ′𝑛 < 2𝑟 ′𝑛 < 𝐵

Therefore, 𝑀′𝑥 = 𝑆′ if and only if 𝑆 = 𝑀𝑥 .

4. CRyptanalysis

Any given set𝑀 has 2|𝑀 | number of subsets. Therefore, we can exhaust the subset space, checking their sums
against 𝑆 for the general knapsack problem as we defined it in section 2.3 in O(2𝑛) steps.

4.1. Collision Algorithm. We prove a simple collision algorithm for O(2𝑛
2).

Proof. Any general knapsack problem (𝑀, 𝑆) can be solved in O(2𝑛
2).

We start by splitting 𝑀 into two halves,

𝑀𝐿 =
{
1 ≤ 𝑖 <

⌊𝑛
2

⌋
+ 1 : 𝑀𝑖

}
The left half

𝑀𝑅 =
{⌊𝑛

2

⌋
+ 1 ≤ 𝑖 ≤ 𝑛 : 𝑀𝑖

}
The right half

6

Note that if 𝑛 is odd, 𝑀𝐿 has fewer elements. Now we compute the subsets 𝑥𝑖 and their corresponding sums.

Let 𝑏 𝑗 (𝑖) =
⌊
𝑖

2 𝑗

⌋
mod 2. From the little end, 𝑏 𝑗 (𝑖) is the 𝑗 th bit in the binary representation of 𝑖 .

𝐿 =
0 ≤ 𝑖 < 2⌊ 𝑛2 ⌋ : 𝑥𝑖 = {0 ≤ 𝑗 ≤ ⌊lg 𝑖⌋ : 𝑏 𝑗 (𝑖)},

⌊lg 𝑖⌋∑
𝑗=0

𝑥𝑖, 𝑗𝑀𝐿 𝑗


𝑅 =

0 ≤ 𝑖 < 2⌈𝑛2 ⌉ : 𝑥𝑖 = {0 ≤ 𝑗 ≤ ⌊lg 𝑖⌋ : 𝑏 𝑗 (𝑖)},
⌊lg 𝑖⌋∑
𝑗=0

𝑥𝑖, 𝑗𝑀𝑅 𝑗


Since 𝑀𝐿 ∈ N⌊

𝑛
2 ⌋ and 𝑀𝑅 ∈ N⌈

𝑛
2 ⌉ are both sets of positive integers, we may sort both 𝐿 and 𝑅 in O(2𝑛/2). Once

they are both sorted, we may find a collision 𝐿 ★𝑅 = 𝐿ℓ,1 + 𝑅𝓇,1 = 𝑆 like this,

ℓ ←
⌊𝑛
2

⌋
− 1

𝓇 ← 0

while (𝐿ℓ,1 + 𝑅𝓇,1 ≠ 𝑆) # while no collision
if (𝐿ℓ,1 + 𝑅𝓇,1 < 𝑆) then 𝓇 ← 𝓇 + 1
if (𝐿ℓ,1 + 𝑅𝓇,1 > 𝑆) then ℓ ← ℓ − 1

The above loop finds a collision in O(𝑛/2) then we may concatenate 𝐿ℓ,0 and 𝑅𝓇,0 for 𝑥 in 𝑀𝑥 = 𝑆 . quod
eRat
dem■

We show an example where 𝑀 = {2, 3, 5, 7, 11, 13} and 𝑆 = 26,

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1




2
3
5

 =


0
2
3
5
5
7

ℓ → 8
ℓ → 10


★



0 ← 𝓇
7 ← 𝓇
11 ← 𝓇
13 ← 𝓇
18 ← 𝓇
20
24
31


=



0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1




7
11
13


𝐿ℓ,1 + 𝑅𝓇,1 ∈ {10,17, 21, 23, 28, 26}

Therefore, we recovered 𝑥 = [0, 1, 1, 1, 1, 0] in less than 26/2 = 8 steps.

4.2. Lattice Reduction Algorithm. Among the surprising sources of solutions to the knapsack problem are
the lattice reduction algorithms. In section 2.4 we saw the following lattice basis,

B =

[
47 95
215 460

]
If we try to orthogonalise the two almost parallel basis vectors via Gram-Schmidt as described in section 2.2
then we get,

Gram-Schmidt(B) =
[
47 −155875/48434
215 34075/48434

]
Unfortunately, as seen in figure 3, Gram-Schmidt(B) is not only non-integral, but neither does it span the same
lattice (even if it spans the same space). A lattice reduction algorithm is the equivalent of Gram-Schmidt but for
the lattice bases. It takes an integral basis and turns it into a new almost orthogonal basis that spans the same
lattice.

As is usually the case with “firsts”, Gauss [3] gave the first algorithm to reduce a two dimensional lat-
tice. These are lattices with two basis vectors. A. K. Lenstra, H. W. Lenstra, L. Lovász published a more
general lattice reduction algorithm (LLL) in 1982 [6] that reduces any general lattice in polynomial time of
𝑂 (𝑛2 log𝑛 + 𝑛2 logmax(B)). Remember that 𝑛 corresponds to the number of coordinates in any given lattice

7

FiguRe 3. Lattice spanned by B and Gram-Schmidt(B).

vector which matches the cardinality of 𝑀 . maxB is defined as the basis vector with the largest euclidean
norm.

In Remark 7.72 Hoffstein et al. [3] point out that “The problem of efficiently implementing the LLL algo-
rithm presents many challenges.” Therefore, the author decided to implement the LLL efficiently to ensure
their comprehension of the algorithm and illustrate the lattice based attacks on the Merkle–Hellman knapsack
cryptosystem in low dimensions. Note that the listing 3 uses functions previously given in listing 1.

1 def lovasz_condition(G, Mu, k, delta):
2 c = delta - Mu[k][k - 1]**2
3 return G[:, k] @ G[:, k].T >= c * (G[:, k - 1] @ G[:, k - 1].T)
4
5 def lll(bad_basis , delta=0.75):
6 B = np.array(bad_basis)
7 G, Mu = gram_schmidt(B) # G are the B*
8 k, n = 1, B.shape[1] - 1
9 while k <= n:

10 for j in range(k - 1, -1, -1):
11 if abs(Mu[k][j]) > 0.5: # size condition not satisfied
12 B[:, k] -= round(Mu[k][j]) * B[:, j]
13 G, Mu = gram_schmidt(B)
14 if lovasz_condition(G, Mu, k, delta):
15 k = k + 1
16 else:
17 B[:, [k, k - 1]] = B[:, [k - 1, k]] # swap
18 G, Mu = gram_schmidt(B)
19 k = max(k - 1, 1)
20 return B

Listing 3. Tashfeen’s Python implementation of the general LLL lattice reduction algorithm.

It is here, where we use the specialised construction of theGram-Schmidt , i. e., theGram-Schmidt coefficients
matrix,

Mu = 𝝁 ⇐⇒ Mu[k][j] = 𝜇𝑘,𝑗 =

(
𝑣𝑘 · 𝑢 𝑗

𝑢 𝑗 · 𝑢 𝑗

)
for 𝑘 > 𝑗 .

Figure 4 shows that LLL(B) is not only integral but also spans the same lattice as B.

8

FiguRe 4. Lattice spanned by B and LLL(B) = LLL

([
47 95
215 460

])
=

[
1 40
30 5

]
.

4.3. Lattice Attack Setup. Take any knapsack problem𝑀 = {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑛} with 𝑆 and the relevant solution
𝑥 such that 𝑀 · 𝑥 = 𝑆 . Recall that 𝑟𝑖 ∈ Θ(22𝑛) due to requirements specified in table 1,

Θ(22𝑛) ∋ 22𝑛 = (2 · 2𝑛−1 · 2𝑛)︸ ︷︷ ︸
𝐵

> (2𝑛−1 · 2𝑛)︸ ︷︷ ︸
𝑟 ′𝑛

≥ · · · ≥ (2 · 2 · 2𝑛)︸ ︷︷ ︸
𝑟 ′3

≥ (2 · 2𝑛)︸ ︷︷ ︸
𝑟 ′2

≥ 𝑟 ′1 > 2𝑛

Now consider the following knapsack lattice basis in N𝑑×𝑑 with dim(𝜿) = 𝑑 = 𝑛 + 1,

𝜿 =



2 0 0 · · · 0 1
0 2 0 · · · 0 1
0 0 2 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · 2 1
𝑟1 𝑟2 𝑟3 · · · 𝑟𝑛 𝑆


The lattice spanned by 𝜿 must have a vector that is the result of the following linear combination due to 𝑥 ,

𝑡 =



2 0 0 · · · 0 1
0 2 0 · · · 0 1
0 0 2 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · 2 1
𝑟1 𝑟2 𝑟3 · · · 𝑟𝑛 𝑆





𝑥1
𝑥2
𝑥3
...
𝑥𝑛
−1


=



2𝑥1 − 1
2𝑥2 − 1
2𝑥3 − 1

...
2𝑥𝑛 − 1
𝑀 · 𝑥 − 𝑆


=



2𝑥1 − 1
2𝑥2 − 1
2𝑥3 − 1

...
2𝑥𝑛 − 1

0


Since 𝑥 ∈ {0, 1}𝑛 then 2𝑥𝑖 − 1 = ±1. Therefore, | |𝑡 | | =

√
𝑛 which is at a stark contrast with the other vectors

in the lattice spanned by 𝜿 due to the relative size of 𝑟𝑖 ∈ Θ(22𝑛). Therefore, if we have a way of reducing the
bad 𝜿 to an orthogonal and small, i. e., good 𝜿 ′ then 𝑡 is very likely to be a part of the good basis. That way
is the LLL algorithm and it’s exponential time variations. In section 4.4, we demonstrate a real attack on the
Merkle–Hellman cryptosystem.

9

4.4. Lattice Attack Execution. Tashfeen’s friend Sam uses the Merkle–Hellman cryptosystem with the fol-
lowing public key,

𝑀 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12, 𝑟13, 𝑟14, 𝑟15, 𝑟16, 𝑟17, 𝑟18, 𝑟19, 𝑟20, 𝑟21, 𝑟22, 𝑟23, 𝑟24, 𝑟25]
= [67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645,
4294967293, 8589934589, 17179869181, 34359738365, 68719476733, 137438953469,

274877906941, 549755813885, 1099511627773, 2199023255549, 4398046511101,

8796093022205, 17592186044413, 35184372088829, 70368744177661,

140737488355325, 281474976710653, 562949953421309, 1125899906842621]

And, the encoding given in table 2.

␣ A B C D E · · · T U V W X Y Z
0 1 2 3 4 5 · · · 20 21 22 23 24 25 26

00000 00001 00010 00011 00100 00101 · · · 10100 10101 10110 10111 11000 11001 11010

Table 2. Encoding Table.

Tashfeen sends Sam the name of his favourite Advisory Conference Report (ACR) committee member via,

𝑆 = 2002491457667039

Having read the very well-written written part of the Tashfeen’s general exam, his advisor decides to figure out
the plain-text 𝑥 . He first constructs the bad basis 𝜿 ,

𝜿 =



2 0 1
0 2 0 1
0 0 2 0 1
0 0 0 2 0 1
0 0 0 0 2 0 1
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 2 0 0 0 0 1
0 2 0 0 0 1
0 2 0 0 1
0 2 0 1
0 2 1
𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 𝑟11 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16 𝑟17 𝑟18 𝑟19 𝑟20 𝑟21 𝑟22 𝑟23 𝑟24 𝑟25 𝑆



10

Then, he uses the code implementing LLL in the listing 3 to obtain the reduced LLL(𝜿),

−4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 1174258
2 −4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 −1 0 0 0 0 1174260
0 2 −4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 1174260
0 0 2 −4 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 0 0 0 0 1174258
0 0 0 2 −4 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 −3 0 0 0 0 1174262
0 0 0 0 2 −4 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 1 0 0 0 0 1174264
0 0 0 0 0 2 −4 0 0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0 0 0 1174266
0 0 0 0 0 0 2 −4 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 1174276
0 0 0 0 0 0 0 2 −4 0 0 0 0 0 1 0 0 0 0 −1 3 0 0 0 0 1174296
0 0 0 0 0 0 0 0 2 −4 0 0 0 0 1 0 0 0 0 −1 1 0 0 0 0 1174328
0 0 0 0 0 0 0 0 0 2 −4 0 0 0 1 0 0 0 0 −1 1 0 0 0 0 1174396
0 0 0 0 0 0 0 0 0 0 2 −4 0 0 1 0 0 0 0 −1 1 0 0 0 0 1174534
0 0 0 0 0 0 0 0 0 0 0 2 −4 0 −1 0 0 0 0 1 −1 0 0 0 0 1174810
0 0 0 0 0 0 0 0 0 0 0 0 2 −4 1 0 0 0 0 −1 −1 0 0 0 0 1175364
0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 −4 0 0 0 1 1 0 0 0 0 1176470
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 −4 0 0 −1 −1 0 0 0 0 1178676
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −4 0 1 1 0 0 0 0 1183098
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 2 −4 −3 −3 0 0 0 0 1191934
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 2 −1 −1 0 0 0 0 1209608
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 −3 0 0 0 0 1244958
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 1 −4 0 0 0 1315654
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 2 −4 0 0 1457052
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 1 0 2 −4 0 1739842
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0 2 −4 2305430
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0 0 2 3436596
3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3 3 3 3 0 0 3 3 3 3 782839


Sure enough, after some inspection he finds that the fourteenth column in LLL(𝜿) is the shortest vector 𝑡 in
the lattice spanned by 𝜿 . He can further verify that,

| |𝑡 | | =
√
𝑛 =
√
25 = 5

He then lets,
𝑥 ≡ 𝑡 − 1 ≡ [0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1] mod 3

Breaking 𝑥 per encoding table 2,

00011 01000 00101 01110 00111
↓ ↓ ↓ ↓ ↓
3 8 5 14 7
↓ ↓ ↓ ↓ ↓
C H E N G

5. Key Size

Merkle–Hellman knapsack cryptosystem is based on an NP-complete problem but section 4.4 shows that
the key size 𝑛 matters. Otherwise, nitwits like Tashfeen can go around breaking post quantum cryptography
with their shoddy implementation of some algorithm (listing 3) from the 80’s [6]. Cleary, 𝑛 = 25 is not large
enough. How large should 𝑛 be to be computationally secure? LLL approximates the shortest vector by finding

another vector in the lattice L which is no longer than
(
4
3

) dim(L)−1
2

times the length of the shortest vector [5].

We might use this theoretically provable upper-bound to judge an 𝑛 = 150,(
4
3

) 151−1
2

< 2346417266

Which computes very high. Albeit, Gama et al. show a gap between theoretically provable and empirically
predictable upper-bound [5].

(1.0219) 151−12 < 5.1

This means that for a cryptosystem depending upon the hardness of approximating the shortest vector in a
lattice to be secure, we need dim(L) = 𝑛 + 1 > 150.

11

6. Lattice PRoblems

Under proper randomised assumptions, the Shortest Vector Problem (SVP) is not just NP-complete but is
also NP-hard [3]. One of the contributing factors towards this hardness is the length of the shortest vector.
Unlike that of knapsack lattices, in the general case we are not only unaware of the shortest vector but also
how short it is, i. e., its length. Let 𝜆𝑖 (L) denote the radius of the smallest zero-centred (hyper) ball containing
𝑖 linearly independent vectors of L then we may use 𝜆1(L) as notation for the length of the shortest (possibly
non-unique) vector in L. Additionally, we define the volume or the determinant of a lattice L as,

detL ≤
𝑑∏
𝑖=1

| |𝑏𝑖 | |

Where 𝑏𝑖 are columns of a basis matrix B. Note that the above inequality becomes equality when 𝑏𝑖 are all
orthogonal. According to theGaussian heuristic for a randomly chosen lattice with a sufficiently large dimension
𝑑 ,

𝜆1(L) ≈
√

𝑑

2𝜋𝑒
(detL)1/𝑑

Or, more generally due to the Hermite’s constant 𝛾𝑑 ,

𝜆1(L) ≤
√
𝛾𝑑 (detL)1/𝑑

The exact values of the Hermite’s constant 𝛾𝑑 for 𝑑 > 8 are unknown. We state the three easier versions of the
general SVP. Let 𝑣 be a non zero vector,

Hermite-SVP: For 𝛼 > 0, find a vector 𝑣 ∈ L such that | |𝑣 | | < 𝛼 · (detL)1/𝑑 .
Approx-SVP: For 𝛼 > 0, find a vector 𝑣 ∈ L such that | |𝑣 | | < 𝛼 · 𝜆1(L).
Unique-SVP: For 𝑔 > 1, such that 𝜆2(L)/𝜆1(L) ≥ 𝑔, find the unique shortest 𝑣 ∈ L.

Any algorithm that solves the Hermite-SVP with an approximation factor of 𝛼 also solves the Approx-SVP
with 𝛼2 [7] [5]. We have seen one such algorithm, namely LLL which runs in polynomial time. There are
exponential time variants of LLL known as BKZ andDEEP.While exponential, when these algorithms terminate,
we can hope for a better approximation factor.

As hinted before, there is a gap between the theoretically proven and empirically predicted (by Gama et al
[5]) upper-bounds on the approximation factors of the three of these algorithms. We summarise these gaps in
table 3.

Hermite 𝛼1/𝑑 LLL BKZ DEEP
Empirical 1.0219 1.0128 1.011
Theoretical 1.0754 1.0337 1.075

Table 3. Hermite factor gap for LLL, BKZ and DEEP where 1 ≤ 𝑑 ≤ 200 from by Gama et al [5].

We saw this gap playing out even in our usage of the LLL in section 4.4. We approximated the smallest vector
in the knapsack lattice exactly, which is modelled more precisely via 1.02192×25 ≈ 3 than 1.07542×25 ≈ 38.

12

6.1. Empirical Method. With “empirically predicted” might come the question of the empirical method.
Gama et al. use the “beautiful albeit mathematically sophisticated” probability distribution over the lattices
defined by Goldstein et al. [8] in order to produce random lattices. They can then pick 𝑑 linearly indepen-
dent vectors to form a random basis. Note that they found the Unique-SVP to have a specially reduce-able
case whenever 𝑑 ≤ 70, e. g., the knapsack lattices. In all other cases, they claimed the average case of lattice
reduction via reduction algorithms to be equal to the worst case.

7. Conclusion

Unlike cryptosystems based on suspectedNP-complete problems, Merkle and Hellman based their scheme
on a provableNP-complete problem of the finding a subset that equals a desired sum. The knapsack problem
therein is at at most as hard as theNP-hard problem of finding the shortest vector in a lattice. Lattice reduction
algorithms can be used to solve a given instance of a knapsack problem even in high dimensions 1 ≤ 𝑑 ≤ 100.
This way of solution is en tandem with the gap between theoretically provable and empirically predicted 𝑑 for
which the SVP and its variants Hermite-SVP, Approx-SVP and Unique-SVP should be considered easy to solve.

RefeRences

[1] Steven George Krantz. The proof is in the pudding: The changing nature of mathematical proof, page 203. Springer, 2011.
[2] T. Gowers, J. Barrow-Green, and I. Leader. The Princeton Companion to Mathematics, page 583. Princeton University Press, 2010.
[3] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. An introduction to mathematical cryptography, volume 1,

pages 377, 378, 387, 381, 437, 443, 395. Springer, 2008.
[4] Ralph C Merkle and Martin E Hellman. Hiding information and signatures in trapdoor knapsacks. In Secure communications and

asymmetric cryptosystems, pages 197–215. Routledge, 2019.
[5] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Advances in Cryptology–EUROCRYPT 2008: 27th Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings
27, pages 31–51. Springer, 2008.

[6] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients. Mathematische
annalen, 261(ARTICLE):515–534, 1982.

[7] László Lovász. An algorithmic theory of numbers, graphs and convexity, cbms-nsf reg. InConf. Ser. Appl. Math, volume 50, page 91,
1986.

[8] Daniel Goldstein and Andrew Mayer. On the equidistribution of hecke points. Forum Mathematicum, 15:165–189, 2003.

UniveRsity of OKlahoma, ComputeR Science

	1. Introduction
	2. Background
	2.1. NP-Imposter
	2.2. Linear Algebra
	2.3. Knapsack Problem
	2.4. Lattices

	3. Merkle–Hellman Knapsack Cryptosystem
	4. Cryptanalysis
	4.1. Collision Algorithm
	4.2. Lattice Reduction Algorithm
	4.3. Lattice Attack Setup
	4.4. Lattice Attack Execution

	5. Key Size
	6. Lattice Problems
	6.1. Empirical Method

	7. Conclusion
	References

